Explicit points on the Legendre curve III

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit points on the Legendre curve

We study the elliptic curve E given by y = x(x+1)(x+ t) over the rational function field k(t) and its extensions Kd = k(μd, t). When k is finite of characteristic p and d = p + 1, we write down explicit points onE and show by elementary arguments that they generate a subgroup Vd of rank d − 2 and of finite index in E(Kd). Using more sophisticated methods, we then show that the Birch and Swinner...

متن کامل

Congruences concerning Legendre polynomials III

Suppose that p is an odd prime and d is a positive integer. Let x and y be integers given by p = x2 + dy2 or 4p = x2 + dy2. In this paper we determine x (mod p) for many values of d. For example,

متن کامل

Sziklai's conjecture on the number of points of a plane curve over a finite field III

In the paper [11], Sziklai posed a conjecture on the number of points of a plane curve over a finite field. Let C be a plane curve of degree d over Fq without an Fq-linear component. Then he conjectured that the number of Fq-points Nq(C) of C would be at most (d− 1)q+1. But he had overlooked the known example of a curve of degree 4 over F4 with 14 points ([10], [1]). So we must modify this conj...

متن کامل

Explicit 4-descents on an Elliptic Curve

It is shown that the obvious method of descending from an element of the 2-Selmer group of an elliptic curve, E, will indeed give elements of order 1, 2 or 4 in the Weil-Chatelet group of E. Explicit algorithms for such a method are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebra & Number Theory

سال: 2014

ISSN: 1944-7833,1937-0652

DOI: 10.2140/ant.2014.8.2471